Coupling and evaluating gas/particle mass transfer treatments for aerosol simulation and forecast
نویسندگان
چکیده
[1] Simulating gas/particle mass transfer in three-dimensional (3-D) air quality models (AQMs) represents one of the major challenges for both hindcasting and forecasting. The lack of an efficient yet accurate gas/particle mass transfer treatment for aerosol simulation and forecast in 3-D AQMs warrants its development, improvement, and evaluation. In this paper, several condensation/evaporation schemes (e.g., the Bott, Trajectory-Grid (T-G), Walcek, and analytical predictor of condensation (APC)) are first tested in a condensation-only case. The APC and Walcek schemes are shown to be more accurate than the Bott and T-G schemes. The Walcek and the APC schemes are then incorporated into the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) to solve the gas/particle mass transfer process explicitly. The test simulations with MADRID are initialized with measurements available from three sites with representative meteorological and emission characteristics. The results are evaluated using benchmark based on the kinetic approach with 500-section for all cases and available measurements from two sites. The box MADRID tests have shown that the bulk equilibrium approach fails to predict the distribution of semivolatile species (e.g., ammonium, chloride, and nitrate) because of the equilibrium and internal mixture assumptions. The hybrid approach exhibits the same problem for some cases as the bulk equilibrium approach since it assumes bulk equilibrium for fine particles. The kinetic approaches (including the APC and Walcek schemes for the condensation/evaporation equations) predict the most accurate solutions. Among all approaches tested, the bulk equilibrium approach is the most computationally efficient, and the kinetic/Walcek scheme provides an accurate solution but is the slowest due to its requirement for a small time step. Overall, the kinetic/APC and hybrid/APC schemes are attractive for 3-D applications in terms of both accuracy and computational efficiency.
منابع مشابه
Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory
This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...
متن کاملTwo-dimensional Simulation of Mass Transfer and Nano-Particle Deposition of Cigarette Smoke in a Human Airway
The chance of developing lung cancer is increased through being exposed to cigarette smoke illustrated by studies. It is vital to understand the development of particular histologic-type cancers regarding the deposition of carcinogenic particles, which are present in human airway. In this paper, the mass transfer and deposition of cigarette smoke, inside the human airway, are investigated apply...
متن کاملSimulation of Stresses Induced by Heat and Mass Transfer in Drying Process of Clay-like Material
Drying represents one of the oldest unit operations employed in industrial processes. Drying is viewed as a process of simultaneous heat and mass transfer. Porous Clay-like material undergoes stresses due to non-uniform distribution of temperature and moisture induced by heat and mass transfer respectively. The aim of this work is to simulate the stresses induced by heat and mass transfer durin...
متن کاملSize - resolved and chemically resolved model of atmospheric aerosol dynamics
A three-dimensional, size-resolved and chemically resolved aerosol model is developed. Gas-to-particle conversion is represented by dynamic mass transfer between the gas and aerosol phases. Particle-phase thermodynamics is computed by a new thermodynamic model, Simulating Composition of Atmospheric Particles at Equilibrium 2. The aerosol model is applied to simulate gas and aerosol behavior in ...
متن کاملCFD Simulation of Porosity and Particle Diameter Influence on Wall-to-Bed Heat Transfer in Trickle Bed Reactors
Wall-to-bed (or wall-to-fluid) heat transfer issues in trickle bed reactors (TBR) has an important impact on operation and efficiency in this category of reactors. In this study, the hydrodynamic and thermal behavior of trickle bed reactors was simulated by means of computational fluid dynamics (CFD) technique. The multiphase behavior of trickle bed reactor was studied by the implementation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008